今日は、合成関数の微分と Taylor 展開の問題を扱いました。
前回のレポートの答案で、sin(x)/x の極限値が 1 になることを用いている人が何人かいましたが、残念ながらそれらの解答には誤りがありました。それは、x の値の近づけ方が適切ではなかった点です。本来、sin(x)/x が 1 に近づくのは、x が 0 に近づくときですが、今回の用いられ方では、x が無限大に発散しており、この状況下では、sin(x)/x は 0 に収束することは明らかです。こういった極限値の扱いにも注意してほしいと思います。
講義の方は、昨日の講義で、重積分に入ったとのことですが、来週は学園祭の都合で火曜日の講義は休講になりますので、演習の進度は、来週の授業で追いつくことができると思います。学園祭でいろいろ忙しい人もいるかと思いますが、ご健闘をお祈りします。
2 件のコメント:
いつも提出課題に書いてくださるコメントを、今後の学習に役立てています。今後も、微積分演習よろしくお願いします。
コメントがお役に立っているようで何よりです。今後ともよろしくお願いします。
コメントを投稿